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ABSTRACT 

Approximate computing has emerged as one of the areas studied over the past few 

years to improve the performance and energy consumption computers. Approximate 

computing tolerates imprecision during computation, and it produces data values that are 

close to the actual outputs obtained from exact computation. From software to circuit 

level, approximate computing techniques have been applied across all computing 

domains. This study was carried out on microarchitectural level, where dependencies 

between two instructions are relaxed in the scheduling unit. This research proposed a 

technique that allows dependent instructions to execute without waiting for values 

produced by their producer instructions. This process enabled schedulers to skip certain 

pipeline processes such operand rename lookup, and instruction wake-up in the 

instruction scheduler queue to provide additional energy savings. The results of this work 

revealed an average performance acceleration of 1.25x. In addition, the total of energy 

savings was achieved at 4.6% for approximation cases that produced tolerable error at the 

output.  
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CHAPTER1.  INTRODUCTION 

The introduction of solid-state devices in the past has enabled computing technology 

to evolve significantly over time. With Dennard Scaling [1], the length of the transistors can 

be further scaled down which enables the computing device to run at higher frequencies at 

the same power densities. Together with Moore’s Law [2], the number of transistors per unit 

area doubled every two years. More recently, the introduction of multi-core processors has 

led to a dramatic performance increase in computing.  

Multiple techniques were proposed and developed in parallel to further increase the 

performance of computers. These techniques were centered on a concept known as 

Instruction Level Parallelism (ILP), where some computer instructions are executed 

simultaneously as opposed to implementing it in sequential order. The Out-of-Order (OoO) 

core [3] execution was developed to take advantage of free resources in the CPU pipeline, 

where independent instructions can be scheduled and executed in parallel, and the 

instructions are able to retire in in-order manner through the Reorder Buffer (ROB). 

Another significant technique for increasing the ILP is through Branch Prediction 

scheme [4]. For branch and jump instructions, it typically takes multiple clock cycles to 

compute the branch target address. This could result in pipeline stall, where the subsequent 

dependent instruction needs to wait for current branch computation to be completed. Branch 

prediction forecasts the branch direction at the early stage of the pipeline. As more branch 

instructions are correctly predicted, the number of overall cycles per instruction (CPI) of the 

program will decrease significantly.  

As computers have become mobile, much of the current focus has been directed 

towards reducing energy and power consumption, since high performance computers draw a 
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lot of energy in battery-operated devices. Among other techniques used, approximate 

computing is one of the approaches implemented to reduce energy consumption by making 

some of the computing data values as approximated instead of precise. The total high energy 

consumption in computing is accumulated from all over the microarchitectural pipeline 

stages in the superscalar processor. Data processing operations in pipeline stages that 

contribute to huge energy consumptions are considered as good candidates for 

approximation. From a hardware perspective, pipeline units that undergo approximation will 

offer lower energy consumption. This research approximated the data value of instructions 

with dependencies. By relaxing instruction dependencies, the user skipped the operand 

rename lookup process in renaming stage and also ignored the instruction wake-up process in 

the scheduling unit. Energy savings were obtained from these processes as well as the need to 

use a smaller number of functional units. 

The remainder of this thesis is organized as follows. Chapter 2 discusses approximate 

computing in detail as well as value approximation. OoO core pipeline is also explained 

since it was used as the foundation for this research. Chapter 3 discusses related works 

pertaining to approximate computing, especially research that was closely related to the 

current study. Chapter 4 discusses the selection of instruction for approximation as well as 

approximation of dependency-based instruction, which was further narrowed to the 

possibility of omitting the register operand renaming and instruction wake-up processes. 

Chapter 5 describes the design implementation through the modification of the pre-existing 

open source CPU system simulator program. Chapter 6 describes methodology and 7 

discusses the evaluation and result.  Finally, Chapter 8 provides the conclusion and provides 

recommendations for future study.  
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CHAPTER 2.  BACKGROUND 

This chapter discusses an overview of approximate computing, as well as the area in 

computing system that can be exploited for approximation. Then, data value prediction and 

approximation are reviewed; value approximation serves as the basis of this research. Finally, 

the OoO pipeline is illustrated so that the possible approximation in the hardware can be 

examined.  

2.1  Approximate Computing 

Approximate Computing has emerged as one of the areas that is explored over the 

past few years. The failure of Dennard Scaling, where the transistor operating voltage could 

not be further scaled down proportionally to the transistor size, has caused the power 

densities of microprocessor to escalate. This has led to what is called as Dark Silicon 

problem, where all transistors could not be fully utilized to prevent the chip from exceeding 

the thermal limit [5, 6]. Due to this constrain, approximate computing has been proposed as a 

technique to improve the energy efficiency of a computer [7]. The term approximate 

computing can be thought as a method that does not produce an exact result, but rather 

produces an imprecise value that is closed to the actual output value. This method can save a 

lot of resources utilization as well as computing time, which implies gain in performance and 

energy, but as a tradeoff, user would expect to see loss of quality at the output [8, 9, 10, 11]. 

Approximate computing can be applied in areas that can tolerate a percentage of loss and 

errors, and an example of this would be in Digital Signal Processing (DSP) domain. A lot of 

DSP application such as image and video processing, speech recognition, scientific data 

computing, etc., require lots of computation and resources because huge amount of data is 

consumed as inputs. 
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In approximate computing, instead of producing an exact output, the method would 

undergo couple of approximating processes such as, but not limited to, voltage over-scaling 

[12], reducing the bit width precision for floating point data (which would save the functional 

units in hardware) [13], and reusing the previous computed result [14]. The loss in quality 

would be anticipated but as long as the result is tolerable within human perception, then the 

output is good enough. Figure 2.1 shows an example of comparison of image quality between 

precise (left) and approximate image (right). The approximate image still can easily be 

identified, although the quality degrades. 

 

Figure 2.1  The image quality between precise and approximate image (adapted from [11]) 

 

2.1.1  Region of Approximate Computing 

There are various of approximate computing techniques that were introduced, and 

these are implemented across both software and hardware. According to [8, 15, 16], the 

region of approximation in computing can be divided into three: software/algorithm, 
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architecture, and circuit. Both architecture and circuit regions fall under hardware 

approximation techniques. 

 2.1.1.1  Approximation in Software 

Approximation in software is a straight forward technique that require programmers 

to modify the code or introduce a different algorithm that compute the data in approximate 

manner. For example, one of approximation techniques in software is Loop Perforation [17]: 

In this approach, some iteration in a loop is skipped, which results in performance 

enhancement and energy savings. 

2.1.1.2  Approximation in Architecture 

Approximation in architecture varies from Instruction Set Architecture (ISA) level to 

the microarchitecture level. For example, in ISA extension several instructions are identified 

at compilation time that are resilient towards approximation. In [20], a region of code in a 

program can be examined and annotated, and the corresponding instruction are tagged as 

approximate. On the other hand, for every annotated instruction that is executed during the 

run time, such as load instruction, the microarchitecture can adapt several approximation 

techniques and execute them in approximate manner [19]. 

Data that reside in memory storage can also be tolerated to errors. As indicated in 

[21], the refresh rate of DRAM is made low to save energy. At the same time, it introduces 

soft error in the memory cell which leads to alteration of the data value.  

2.1.1.3 Approximation in Circuit 

For approximation in the circuit level, some techniques include voltage over-scaling 

in ALU as well as SRAM [12]. Lower voltage in SRAM causes the memory cell to fail and, 

thus, introduces errors during accessing the data from caches [22], while voltage over-scaling 

in logic cause timing violations which affect data precision [23]. Logic circuits such as the 
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adder and multiplier can also be modified for approximation. For example, in a full adder 

circuit the design of the adder is simplified at the circuit level which causes the adder to 

perform an inaccurate addition function [11, 25]. 

2.1.2  Error Quality of Metrics 

Since approximate computing improves performance and energy at the expense of 

errors and loss of quality, several quality metrics are used to quantify the error that is 

introduced. Different applications produce different outputs; therefore, specific quality 

metrics are used for each application. For DSP application, Signal to Noise Ratio (SNR) of 

the approximate output are compared with the exact output for evaluation [24, 25]. Root 

Mean Square Error (RMSE) is another quality metric used in image processing application, 

and average relative error is used for numerical output [26]. 

2.2  Value Speculation 

Data value speculation is a technique that predicts the data used for computation 

before the actual value is loaded to secure the computation cycle in the microarchitecture.  

The current research predicted and approximated the output value of selected instruction to 

exploit the microarchitecture for additional energy and power savings.  

2.2.1  Value Prediction 

Research in value prediction was carried out in the past to increase the performance 

of a computer. The concept of Value Locality, where previously seen values are repeatedly 

appeared in a program, enables the microarchitecture to predict the value of the data [27]. 

Similar to the branch prediction technique, where the speculation is made towards branch 

previous history (taken or not taken) and is represented in a single bit, value prediction 

extends the speculation to the entire data bits (32 or 64 bits).  
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A typical approach to predict a value is through the incorporation of a value look-up 

table or buffer in the microarchitecture [14, 33-35]. The computed data are stored in the table 

and accessed later, when values of an instruction are being speculated. Due to the size of the 

data, the table is typically large and is generally introduced as an overhead in the pipeline.  

Similar to the branch prediction mechanism, in the event of misprediction of a value 

for an instruction, the pipeline will be squashed and the process will restart by re-executing 

the instruction precisely (normal execution). 

2.2.2  Value Approximation 

The concept of value approximation [19, 28] is similar to value prediction wherein 

locality of the data permits the value to be speculated. However, in value approximation the 

value does not need to be precise all the time. The exactness of a value can be relaxed and 

imprecise data can be used to compute the output. Error is expected at the output; however, 

as long as the effect is minimal and tolerable it should be adequate. 

A distinct feature of value approximation is that the recovery step is eliminated 

during misprediction. A gain in performance and energy can be achieved due to the saving of 

the clock cycle and energy that are used during rollback/recovery steps. 

2.3  Out-of-order Pipeline 

An OoO superscalar pipeline core has become mainstream in the commercial CPU 

due to the ability to dynamically execute instructions in parallel as opposed to single scalar 

core. Figure 2.2 shows an example of an OoO pipeline that is modeled inside an McPAT tool 

[29], a power modeling tool for CPU. This model is based on the architecture of Alpha 21264 

processor [30] which is a physically-register based OoO core. 
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Figure 2.2  Physical register based OoO pipeline (adapted from [29]) 

 

Due to limited number of architectural registers allocated during compiling time some 

independent instructions are assigned with the same architectural register, which could lead 

to false dependencies between those instructions. In the renaming stage, the architectural 

register is renamed, or mapped into the microarchitecture’s physical register to take care of 

the false dependencies issue. The Register Alias Table (RAT) contains a mapping of the 

architectural register for the physical register. The Dependence Check Logic (DCL) circuit 

checks true and false dependencies between instructions, and maps the appropriate physical 

registers to the destination and source operands in the architectural register.  

In the Issue and Schedule stages, the instruction will be dispatched into a buffer 

known as Instruction Queue (IQ). The IQ holds instructions and schedules any instruction for 

execution that is ready in an out-of-order manner. For an instruction to be ready its source 

operands must also be available. Otherwise, for dependent instruction it must wait for 

another instruction(s) (producer) to yield the result, which will then be written into the 

register file and finally consumed by a dependent instruction (consumer). This process is 

known as Instruction Wakeup/Select, where the producer wakes up the consumer instruction 

once the result is ready. 
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For instructions with Read-After-Write (RAW) dependency, this research proposed to 

break this dependency by executing the consumer instruction without waiting for the 

producer instruction. The result value of consumer instruction would be approximated and 

the instruction, itself, would not have to be issued to the functional unit for execution. 

In the rename stage, since the approximate instruction result (destination) is 

speculated, there is no need to rename the source operand since it is not being used. In the 

wakeup/select stage, since the consumer does not have to wait for the producer to generate 

the result, the wakeup process is omitted. Both techniques could lead to additional energy 

savings.   
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CHAPTER 3.  RELATED WORKS 

3.1  Value Prediction Mechanism 

Previous works in value prediction are centered on history-based approach. A result 

value that is computed from an instruction is kept in a prediction table, and this value can be 

reused constantly by the same instruction that follow in the next cycles. This technique is 

known as last value prediction, as described by Lipasti et al. [14]. In a similar work, Sodani 

and Sohi [31] presented an instruction reuse scheme, in which an instruction can reuse the 

result produced by a previously-executed instruction based on the condition that both 

instructions are consuming similar input values (i.e. instructions with different Program 

Counter (PC) value). Azam et al. [32] implemented a buffer known as execution cache; 

during execution of an instruction, in which registers find and grab the value from the cache 

and computation in the functional unit is bypassed. The energy spent in cache is less that the 

energy spent in the functional units which leads to energy savings. 

Values stored in the table can also be updated regularly to improve the accuracy in 

the predicted value. While last value prediction uses the same constant data repeatedly, a 

certain predictor can also perform some computation to update its stored value. As shown in 

[33-35], the authors used stride value to predict data based on the difference between two 

previous values in the history. In two of the same studies [33, 34], a context-based predictor 

was also used whereby data are updated according to a specific pattern generated from the 

previous history of the data value.  

3.2.  Dependencies-based Instruction Speculation 

True dependencies limit the ILP of a computer. Couple of works has focused on 

improving the ILP through speculative dependencies instruction. Calder et al. [34] filtered 

and selected a group of instructions for value predictions that provided a huge impact on 
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performance, including instruction on the long dependency path. Instruction on a critical path 

can be retired faster provided that the values consumed by those instructions are predicted 

correctly.  

Selecting instructions with a long latency for speculation has also proven to be 

beneficial. As described by Alvarez et al. [24], selecting long latency instruction such as 

floating-point multiplication and division for value approximation, provides a substantial 

gain in performance and energy savings. In addition, several bits in the operands value are 

truncated and used as tags in the table. Different instructions that have matching operand tags 

can use these values; although the final quality of the output is degraded, the error is 

tolerable. The authors also implemented this scheme for the in-order processor. 

3.3  Eliminating Recover Mechanism 

In a traditional value prediction scheme, in the event of value mispredictions all in-

flight instructions will be squashed, and the pipeline will restart from where the instruction is 

mispredicted. Such a recovery is not needed in value approximation because an inexact value 

can still be used for computation. San Miguel et. al [19] illustrated the concept of 

approximating a value for load instruction. In the study, the authors approximated the value 

when there is a missing cache; instead of spending additional cycles to obtain the value from 

the main memory, the value was taken directly from the approximation table which might be 

inaccurate. Approximating the value during cache misses delivers a significant performance 

gain and reduces energy spent in fetching the value from the main memory. A similar scheme 

was implemented in a Graphics Processing Unit (GPU) [28], where the main target was to 

reduce the bottleneck of memory bandwidth. In the same study, Thwaites et al. used last-

value prediction for approximating floating-point data and stride for integers.  
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CHAPTER 4.  IDENTIFYING INSTRUCTION FOR APPROXIMATION 

In order to execute certain instructions as approximate, the instruction must first be 

identified and determined prior to running the program on the microarchitecture. It is most 

important to select instructions for approximation that ensure the program behavior will not 

be affected. 

4.1  Instruction Selection 

Previous research on approximate computing has made it possible to determine which 

instruction is suitable for approximation. Through approximation language support 

frameworks such as [18, 20, 36], programmers can identify the region of approximation in 

the program and provide annotation to the data in the code which, in turn, is written in high-

level programming language. Data can be tagged as precise or approximate in which the 

framework evaluates the safety of the approximation. To ensure the data are safe-to-

approximate, the data must not affect the control flow of a program or involve memory 

operation, i.e. address of memory [19]. Typically, data that are suitable for approximation are 

selected from a region that is time intensive as the process is executed multiple times, i.e. 

expensive loops. [17, 19, 26].  

In this study, selection was narrowed to arithmetic instruction, specifically addition, 

multiplication and division, because the instructions require at least two operands. Similar to 

previous studies, the purpose was to execute consumer instruction without waiting for its 

producer to maximize performance gain.  

An x86 ISA was utilized for this purpose and Sobel Operator sample code was 

obtained from ACCEPT framework [18]. The code comes pre-annotated. This work was 

leveraged to identify the instruction. 
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4.2  True Dependencies 

The foundation of this work was based on true dependencies of instructions, which 

are also known as RAW dependencies. As discussed in Chapter 2, approximate data from the 

program that have dependencies were used to speculate consumer instruction without waiting 

for results from producer instruction(s). Figure 4.1 shows a portion of assembly instruction 

with dependencies from Sobel operator code generated with objdump in Linux. Inst. 2 and 

Inst. 3 (movsd) are producer instruction while Inst. 4 (divsd) is consumer instruction.  

 

Figure 4.1  Example of x86 assembly instructions with dependencies 

 

4.3  Benchmark Overview 

4.3.1  Sobel Operator 

Sobel operator [38] is an image processing filtering technique used for edge detection 

of a greyscale image. Detection is based on the gradient measurement of an image through 

derivative approximation function. The filter algorithm has two kernels, horizontal and 

vertical kernels that are used for x-direction and y-direction edge detection, respectively. The 
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image is convoluted with these two kernels and combined to produce the gradient magnitude 

of the image. Equation 4.1 shows the horizontal and vertical kernel used in Sobel operator 

algorithm. 

Gx = [
+1  0 -1

+2  0 -2

+1  0 -1

]          Gy = [
+1 +2 +1

  0   0   0

-1 -2 -1

] (4.1) 

 

 Sobel application is suitable for approximation because the algorithm has loops that 

keep iterating to compute the convolution, in which the number of iterations depends on the 

size of the image. The input image is stored as a 2-dimensional array whereby each iteration 

in the loop of the element of the array is incremented which corresponds to different pixels of 

the image. The pixel value can be approximated; thus, instead of using an exact pixel, the 

adjacent pixel can be reused. 

 Not all instructions in Sobel code are safe for approximation; therefore, the source 

code was modified in this study to include instructions that are insignificant and use 

additional instructions to demonstrate the concept. In addition, based on the provided code, 

filtering was done only for vertical direction; calculation for horizontal axis was not included. 
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CHAPTER 5.  DESIGN AND IMPLEMENTATION 

5.1  Computer System Simulator 

A Gem5 simulator [37] was used in this study. Gem5 is an open source simulator that 

is widely used in computer architecture research. Gem5 is also a modular platform that 

includes several microarchitectures such as an in-order and OoO processor, and can be 

customized according to the user’s need. The OoO model in Gem5 was designed based on 

Alpha 21264 [30] which implements physical-register based instruction window, known as 

issue queue (IQ), in the issue stage. The IQ only holds instruction and physical register 

operand tags and, during the wakeup process, the data value will be accessed from the 

physical register file and issued to the functional unit for execution. In addition to running the 

simulator in system-call emulation mode, Gem5 is also capable of running the simulation in 

full system mode. The Gem5 was configured in this study to run in system-call emulation 

mode to modify the microarchitecture. Gem5 also supports multiple ISA such as x86, ARM, 

Alpha, RISC-V, etc. 

5.2  Dependent Instructions Grouping 

In this research it was assumed that some compilers could generate additional tags 

and information for approximate instruction. Additional bits are used to tell if an instruction 

is approximate or precise, as well as a producer and consumer type. It was also assumed that, 

for related consumer instructions, a compiler can assign a group tag to each instruction that is 

used for an approximation counter. The bit width of a group tag varies with the number of 

instruction pairs to be approximated. For example, 3 bits of group tag would enable a total 

number of 8 approximated instructions or fewer. Table 5.1 shows the additional tags of an 

instruction. For Apx bit, bit 0 is assigned to exact instruction and 1 is for approximate  
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Table 5.1  List of instructions, addresses and tags. 

Instruction PC 
Apx 

bit 

Inst. Type 

bit 

N-bits 

Group 

0x401244 1 0 1 (01) 

0x401248 1 1 1 (01) 

0x40124c 0 - - 

. . . . 

. . . . 

0x40125d 1 0 2 (10) 

0x401253 1 1 2 (10) 

0x401257 0 - - 

 

instruction. For Inst. Type, 0 is assigned to producer and 1 is assigned to consumer 

instruction. Group bit is a unique identifier for each approximate instruction pair. 

5.3  Execution of Approximate Instruction 

The execution of an approximated consumer instruction takes place in the execute 

stage. In a normal operation, once the value of source operands of an instruction is ready, the 

instruction is set to be ready for execution where it will be issued into the functional unit. For 

approximated instruction, this process is somehow bypassed; instead of issuing the 

instruction to functional unit, the destination register value will grab its data from an 

approximation table. This instruction does not have to wait for its producer and can proceed 

directly for approximation. The value that is grabbed from the table will also be forwarded to 

the register file. Figure 5.1 shows an overview of the block diagram, slightly modified from 

[29], with the addition of the approximation table in the pipeline.  

5.4  Approximation Table 

Similar to previous research on value approximation, a lookup table was developed to 

store the value used for approximation. To maintain a low overhead, last value 

approximation was used, whereby the previously seen value in history was re-used. Only the 
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Figure 5.1  Overview of execution process in the modified pipeline 

 

destination register value on a consumer instruction is stored in this table, and the 

instruction’s PC/group number can be used as tags, or keys for associative-searching 

purposes. In addition, there is also a counter field that is allocated for each approximate 

instruction entry. The counter maximum value indicates degree of approximation, which is 

the number of times the value in table is used before it is being replaced and updated to a 

new value. Users set this counter maximum value in advance. For example, if the counter 

value is set to three, it means the instruction will be approximated for three consecutive 

times. Once the counter reaches its maximum value, it will be reset to 0. Zero value 

represents precise execution, and the value computed from precise execution will replace the 

old value in the table entry. This pattern is fixed until the running program finishes. Figure 

5.2 shows the execution flow of executing approximate instructions. 
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Figure 5.2  Flow chart of how approximate instruction is executed 

5.5  Source Operand Lookup in Renaming Unit 

The source operand lookup process can be skipped for all consumer instructions that 

are executed approximately. Typically, in a regular lookup process the DCL will perform a 

check on the RAT and look for the entry that maps the operand architectural register to the 
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physical register. The source operand will be renamed to the physical register index 

according to that mapping. 

Since approximate execution only updates the value of destination register, the value 

of source operand(s) is not needed to compute an output. In this situation, instead of waiting 

for the producer to feed the value, any approximate instruction can be set as ready to issue in 

the pipeline since it has inactive and unnamed source operands. 

The renaming unit also needs to check the counter in the approximation table before 

the operand lookup process can be bypassed. This procedure is needed to keep the renaming 

process in sync with the execution process. In other words, the lookup process can only be 

skipped if and only if the instruction is set to be executed in approximate manner. 
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CHAPTER 6.  METHODOLOGY 

MATLAB was used to compute and compare the Root-Mean-Square error between 

the exact and approximate image to evaluate the error from the approximate output. McPAT 

[29], an open source modeling framework tool that calculates and reports the power and area 

based on modern processor, was used for energy consumption. McPAT takes its input from 

Gem5’s statistics and configuration reports. These reports contain details about OoO core 

processor parameters, as well as number of statistics for every important operation that takes 

place in the pipeline. Some examples of these statistics include total number of cycles, total 

number of committed instructions, number of branch mispredictions, etc. The number of 

rename lookups were accessed from the statistics which correspond to the number register 

operand lookup made in simulation. Performance measurement was accessed by using the 

CPI value from the statistics. Simulations were run on Gem5’s system-call emulation mode, 

and the settings were configured according to the specifications listed on Table 6.1. Other 

parameters that are not listed in Table 6.1 were set to a default value provided in Gem5. 

Table 6.1  Simulator Configuration. 

Component Type/Size 

Processor 
DerivO3CPU (Out-of-Order), 2 

GHz, 4-wide issue 

Target ISA x86 

Main Memory 4096 MB 

L1 Data Cache 32 KB (2-way set associativity) 

L1 Instruction Cache 32 KB (2-way set associativity) 

Cache Line Size 64 B 

 

 



www.manaraa.com

21 

The experiment was divided into three groups which corresponded to the number of 

instructions that were approximated, i.e. approximate one, two, and three instructions in total. 

Multiplication was selected for one instruction approximation group. Multiplication and 

division were selected for the two instructions group, whereas the three instructions group 

included adding instructions together with multiplication and division.  

An approximation pattern was selected for each group, known as degree of 

approximation. For Approx-1, an instruction undergoes approximation with every other 

precise execution. Thus, the data value in the approximation table is used once before it is 

updated again through the next precise execution. The process is similar with Approx-2 and 

Approx-3, whereby the value that belongs to a particular instruction in the table is used twice 

and three times, respectively, before being updated with new data value. This degree of 

approximation is set through the counter value in approximation table. 

These instructions are not directly dependent on each other; load and store 

instructions are located between the instructions. The add instruction is integer type, while 

multiplication and division instruction are floating-point type. 
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CHAPTER 7.  RESULTS AND EVALUATION 

7.1.  Performance Analysis 

The performance of every approximation case was compared to the original 

simulation. The speedup for every case is shown in Figure 7.1. Group 1 (blue) approximates 

only one instruction (mult); group 2 (orange) approximates 2 instructions (mult and div); and 

group 3 (green) approximates 3 instructions (mult, div, and add) as group 3. This group 

designation is used for reporting the results. 

  

Figure 7.1  Speedup of each group with different degrees of approximation 

 

Speedup increases with more number of approximated instructions. In addition, 

increasing the degree of approximation in the same group slightly improves the performance, 

although this is not seen in approx-2 case for group 1. In this experiment, the latency of 

multiplication instruction was set to 4 cycles and the latency of division operation to 20 

cycles (non-pipelined). Skipping the computation that takes numerous cycles in the 
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functional unit contributes to the increase of the performance. In the case of group 3, having 

an additional add instruction does not give any significant boost to the performance. Add 

instruction typically takes one cycle to compute, and this is equal to the number of cycles that 

is set when performing an approximation. 

7.2  Error Analysis 

The Root Mean Square Error (RMSE) metric was used to evaluate the quality of the 

output image. RMSE evaluates how close a pixel value of an approximate image is to the 

original image’s pixel value, by measuring the difference in the value of pixels between two 

images. Figure 7.2 shows RMSE of all cases. A lower number indicates better quality. 

The output image from original simulation as well as image obtained from select 

cases are illustrated in Figure 7.3, together with their respective RMSE value. For group 2  

 

 

Figure 7.2  RMSE of each of the approximate images with respect to the original image 
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Figure 7.3  Image output for select cases (parentheses denotes degree of approximation) 
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with approximation degree of 2, there is a slight distortion in the image (Figure 7.2d), even 

though the RMSE is lower than output from the same group with approximation degree of 1. 

The results imply that quality of image is not proportional to the degree of 

approximation. However, increasing the number of approximated instructions degrades the 

output quality. For this Sobel application, it was revealed that an approximated output image 

still looks acceptable with RMSE value of ~3.5, subject to distortion. 

7.3.  Energy Analysis 

The energy consumption was computed based on the static and dynamic power 

reports generated from McPAT tool. The power measurement is derived based on 90 nm 

technology node that was set up in McPAT. The energy is obtained by multiplying power 

with the execution time. In addition to measuring the energy in the whole microarchitecture 

core, the energy consumption was also examined for certain individual units of interest in the 

pipeline. The analysis was begun by observing the overall energy consumption in the 

microarchitecture for all cases of approximation. Based on this approximation technique, 

energy savings was obtained in most of the cases. Figure 7.4 shows the percentage of energy 

savings in every case in this experiment.  

Due to skipping and omitting some microarchitectural event in the pipeline, the 

reported number of related events was slightly less. Next, the dynamic power consumption 

was examined to determine how this method contributes to the energy savings. The readings 

from the statistics are related to the switching activities in the circuit that occur during the run 

time. Dynamic power consumption corresponds to activity factors, which is one of the 

parameters used in dynamic power calculation.  
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Figure 7.4  Overall energy savings for all cases 

 

Several relevant pipeline processes taken from gem5 statistics are presented based on 

the main purpose of the study to look for energy savings in rename, scheduling, and 

execution stage. Therefore, the event count is reported for some processes in these stages. 

The evaluation compares only findings from the original with findings obtained from group 

2, approx-2 case (see Table 7.1). The dynamic energy consumption of each unit of interest in 

comparison is shown in Table 7.2. 

 

Table 7.1  Energy Relevant Microarchitectural Event Counts. 

Process Original Mult-Add (approx-2) 

FP Rename Lookup 73396095 67941158 

FP Instruction Wakeup 55672934 50654257 

FP ALU Access 55675056 52550295 

Approx. Table Read Count - 3380181 

Approx. Table Write Count - 1301901 
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Table 7.2  Dynamic Energy Consumption. 

  

Unit 
Dynamic Energy (mJ) 

Original Mult-Add (approx-2) 

Rename 91.620 91.27 

Execution 407.95 393.03 

Scheduling 118.65 116.17 

Approximation Table - 12.74 

Processor 843.86 831.51 

 

7.3.1  Energy in Renaming Unit 

Figure 7.5 shows the total energy savings in the renaming unit for all cases. As 

predicted, energy savings is higher in group 2 and group 3. Next, an examination of how 

skipping the operand lookup for approximate instructions affect the energy consumption was 

made based on the findings in Table 7.2. The savings gained from skipping the operand 

lookup process for group 2, approx-2 case was only 0.38%. 

 

Figure 7.5  Total energy savings in renaming unit 
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7.3.2.  Energy in Scheduling Unit 

Figure 7.6 illustrates the total energy saving in scheduling unit for all cases. As 

indicated, the average energy savings in scheduling unit for group 2, approx-2 case is 2.06%. 

The plot in the figure represents the sum of energy that is obtained from static and dynamic 

power consumption.  

The instruction wakeup process occurs inside the IQ, which is part of scheduling unit 

in the pipeline. Therefore, the dynamic energy consumption for this unit was examined. 

Based on data in both Table 7.1 and Table 7.2, a smaller number of FP Instruction Wakeup 

process has contributed to a dynamic energy savings of 2%, for group 2, approx.-2 case.  

7.3.3  Energy in Execution Unit 

Figure 7.7 shows the energy savings in execution unit for all cases and based on the 

percentage, most of the energy savings came from this stage. Approximate instructions were 

not issued to the functional unit, which result in less number of functional unit used during 

 

Figure 7.6  Total energy savings in scheduling unit 
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Figure 7.7  Total energy savings in execution unit 

 

runtime. The total energy saving from execution unit is around 5.9%, for group 2, approx.-2 

case. 

7.3.4  Approximation Table Overhead 

As described in Section 5.4, a simple approximation table was developed with a goal 

of not introducing too much overhead to the pipeline. In this experiment, only up to three 

instructions were selected in total for approximation. Therefore, there was no need for a table 

with large entries. Thus, there was not a need to use the entire PC bits for tags; group bits are 

enough for this purpose (see Section 5.2). As shown in Table 7.2, the energy used in the 

approximation table was low if compared to the amount of energy used in other units. It was 

also revealed that, for all cases, the energy used (static + dynamic) in the approximation table 

was in the range of 13.5 – 13.7 mJ. Therefore, the introduction of the approximate table does 
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not contribute to more energy usage, except for the case of group-1, approx.-1, where the 

total energy spent is slightly higher than the original simulation. 

7.4  Discussion 

A gain in performance is straight forward; skipping the long latency computation 

saves lots of cycles. Nevertheless, in this case, because the outcome focused on energy 

consumption, relaxing the dependency between two dependent instructions enabled tweaking 

a couple of pipeline processes that could intuitively reduce the energy spent in the whole run. 

This research was specifically focused on skipping the operand lookup in the rename 

stage and omitting the instruction wake up in the scheduler to determine if it would 

contribute to energy savings. The results revealed that not much energy can be saved from 

these two methods dynamically. This is because the number of reductions in these two 

processes is small. The reduction needs be much larger to determine if more savings can be 

derived from these methods. To achieve this purpose, one would need to include and add 

more instructions for approximation. Approximating more instructions saves energy; 

nevertheless, the main argument of approximate computing is: How safe it is to approximate 

those instructions; and, if they are safe, how many errors will be introduced at the output? 

Like other approximate computing research, this trade-off analysis needs to be addressed 

first, as well as how the outcome varies between applications. 

For this application, one could determine the instruction group and approximation 

degree that will provide good resulting values in all aspects. From the error vs. energy plot 

shown in Figure 7.8, approximating multiplication and division instructions with 

approximation degree of 1 and 2, can yield a good tradeoff between energy and error.  
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Figure 7.8  Error vs. energy plot for all cases 
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CHAPTER 8.  CONCLUSION AND FUTURE WORK 

Approximate computing is a widespread technique used to increase the performance 

of computer system and reduce the energy spent in the pipeline. The technique utilizes less 

resources as well as less computation time; however, as a tradeoff the user would expect to 

see a loss of quality in the output. Approximate computing can be applied in areas that can 

tolerate a percentage of loss and errors. An example of this can be found in the DSP domain. 

Much application under DSP, such as image and video processing, speech recognition, 

scientific data computing, etc., require a great deal of computation and resources due to the 

need for a huge amount of computer data as inputs.  

This thesis research introduced another microarchitectural approach in approximate 

computing. This work demonstrated the effect of these approaches on the performance and 

energy consumption of a computer. A value approximation technique was implemented by 

scheduling dependent instructions without waiting for their operand values computed from 

their producers. In this work, the best result was obtained at 1.25x speedup and total energy 

savings of 4.6%, with an acceptable error at the final output. 

Apart from energy savings that resulted from less usage of functional units, additional 

energy savings techniques were applied in the pipeline. During approximation of an 

instruction, the operand renaming lookup process was skipped during register renaming, as 

well as disabling instruction wake up process in the IQ. An approximation with acceptable 

image output revealed a minimal dynamic energy saving of approximately 0.4% for operand 

lookup, and approximately 2% for the instruction wakeup process. The low energy saving is 

expected because only a very small number of instructions was approximated, which led to 
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very small reduction in related microarchitectural events. Since this study was still in 

rudimentary stage, future work should include the following considerations: 

• An approximation with more numbers of instructions. The number of operand 

renaming lookup and instruction wakeup processes can be reduced proportionally 

with higher number of instructions for approximations. 

• Experimenting with different benchmarks. One might want to determine if these 

techniques work across application from different domain. Applying these techniques 

to different application might also provide more meaningful finding s and results. 

• Selecting multiple instructions with longer dependency chain. As described in Section 

3.2, speculation of instructions in long data path would enable instructions to commit 

faster. If possible, the instruction at the beginning of the dependency chain until the 

one before final consumer can be totally approximated or omitted from execution. 

This could become another potential research area in the future.   
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