
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2018

Energy savings techniques in out-of-order pipeline
through value approximation of instructions with
data dependencies
Mohd Tariq Azmy
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons, and the Electrical and Electronics Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Azmy, Mohd Tariq, "Energy savings techniques in out-of-order pipeline through value approximation of instructions with data
dependencies" (2018). Graduate Theses and Dissertations. 16785.
https://lib.dr.iastate.edu/etd/16785

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16785&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16785&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F16785&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Fetd%2F16785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/16785?utm_source=lib.dr.iastate.edu%2Fetd%2F16785&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Energy savings techniques in out-of-order pipeline through value approximation of

instructions with data dependencies

by

Mohd Tariq Azmy

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering (Computing and Networking Systems)

Program of Study Committee:

Akhilesh Tyagi, Major Professor

Swamy Ponpandi

Long Que

The student author, whose presentation of the scholarship herein was approved by the

program of study committee, is solely responsible for the content of this thesis. The

Graduate College will ensure this thesis is globally accessible and will not permit

alterations after a degree is conferred.

Iowa State University

Ames, Iowa

2018

Copyright © Mohd Tariq Azmy, 2018. All rights reserved.

www.manaraa.com

ii

DEDICATION

To my wife, Aqilah,

my son, Yusuf,

and my parents, Azmy and Zarah,

for being my source of inspiration.

www.manaraa.com

iii

TABLE OF CONTENTS

Page

LIST OF FIGURES ...v

LIST OF TABLES ... vi

NOMENCLATURE ... vii

ACKNOWLEDGMENTS ... viii

ABSTRACT ...x

CHAPTER 1 INTRODUCTION ...1

CHAPTER 2. BACKGROUND ...3

 2.1 Approximate Computing ..3

 2.1.1 Region of Approximate Computing...4

 2.1.1.1 Approximation in Software ..5

 2.1.1.2 Approximation in Architecture ..5

 2.1.2.3 Approximation in Circuit ...5

 2.1.2 Error Quality of Metrics...6

 2.2 Value Speculation ...6

 2.2.1 Value Prediction...6

 2.2.2 Value Approximation...7

 2.3 Out-of-order Pipeline ...7

CHAPTER 3. RELATED WORKS ..10

 3.1 Value Prediction Mechanism ...10

 3.2 Dependencies-based Instruction Speculation ...10

 3.3. Eliminating Recovery Mechanism ...11

CHAPTER 4 IDENTIFYING INSTRUCTION FOR APPROXIMATION12

 4.1 Instruction Selection ...12

 4.2 True Dependencies ...13

 4.3 Benchmark Overview ...13

 4.3.1 Sobel Operator ...13

CHAPTER 5. DESIGN AND IMPLEMENTATION ..15

 5.1 Computer System Simulator ..15

 5.2 Dependent Instructions Grouping ..15

 5.3 Execution of Approximate Instruction ...16

 5.4 Approximation Table ...16

 5.5 Source Operand Lookup in Renaming Unit ...18

www.manaraa.com

iv

CHAPTER 6. METHODOLOGY ..20

CHAPTER 7. RESULTS AND EVALUATION..22

 7.1 Performance Analysis ...22

 7.2 Error Analysis ...23

 7.3 Energy Analysis ...25

 7.3.1 Energy in Renaming Unit ..27

 7.3.2 Energy in Scheduling Unit ...28

 7.3.3. Energy in Execution Unit...28

 7.3.4 Approximation Table Overhead ..29

 7.4 Discussion ..30

CHAPTER 8. CONCLUSION AND FUTURE WORK ..32

CHAPTER 9. REFERENCES ..34

www.manaraa.com

v

LIST OF FIGURES

Page

Figure 2.1 The image quality between precise and approximate image (adapted

from [11]) ... 4

Figure 2.2 Physical register based OoO pipeline (adapted from [29]). 8

Figure 4.1 Example of x86 assembly instructions with dependencies. 13

Figure 5.1 Overview of execution process in the modified pipeline. 17

Figure 5.2 Flow chart of how approximate instruction is executed. 18

Figure 7.1 Speedup of each group with different degrees of approximation. 22

Figure 7.2 RMSE of each of the approximate images with respect to the original

image. ... 23

Figure 7.3 Image output for select cases (parentheses denotes degree of

approximation) ... 24

Figure 7.4 Overall energy savings for all cases. .. 26

Figure 7.5 Total energy savings in renaming unit. .. 27

Figure 7.6 Total energy savings in scheduling unit. .. 28

Figure 7.7 Total energy savings in execution unit. .. 29

Figure 7.8 Error vs. energy plot for all cases. .. 31

www.manaraa.com

vi

LIST OF TABLES

Page

Table 5.1 List of Instructions, Address and Tags. .. 16

Table 6.1 Simulator Configuration. .. 20

Table 7.1 Energy Relevant Microarchitectural Event Counts. 26

Table 7.2 Dynamic Energy Consumption. .. 27

www.manaraa.com

vii

NOMENCLATURE

 ALU Arithmetic Logic Unit

 CPI Cycle Per Instruction

 CPU Central Processing Unit

 DCL Dependence Check Logic

 DSP Digital Signal Processing

 FP Floating Point

 GPU Graphics Processing Unit

 IPC Instruction Per Cycle

 ISA Instruction Set Architecture

 ILP Instruction Level Parallelism

 IQ Instruction Queue

 OoO Out-of-Order

 PC Program Counter

 RAT Register Alias Table

 RAW Read-After-Write

 RMSE Root-Mean-Square Error

 ROB Reorder Buffer

 SRAM Static Random-Access Memory

www.manaraa.com

viii

ACKNOWLEDGMENTS

First, I would like to praise Almighty God, for giving me strength and ability to

complete this research. His blessings and guidance enabled me to meet this challenge.

I would to like to express my appreciation to my advisor, Professor Akhilesh

Tyagi, for the continuous advice and supervision he has given throughout this research.

Professor Tyagi has always been patient and flexible with all the issues I encountered

during the implementation of this research.

I would like to thank my other committee members, Drs. Swamy Ponpandi and

Long Que, for their support and advice as well as Professor Henry Duwe III, for

providing numerous inputs that were beneficial to this research. I am especially grateful

for his willingness to substitute for one of my committee members who was unable to

attend my defense presentation.

I am also grateful to several people and friends who have provided additional

assistance to my work. I am thankful to the gem5 contributors from the mailing list who

responded to all the questions and issues that I had while working with the tool. I would

also like to express my gratitude to Mr. Christos Sakalis from Uppsala University,

Sweden, for sharing his previous gem5 modification work that I used as the basis in my

study.

I would like to extend my appreciation to the University Putra Malaysia and the

Malaysian Ministry of Education for funding my Master of Science Program of Study at

Iowa State University.

www.manaraa.com

ix

Finally, I am grateful to my family members, especially my wife, Aqilah, and my

parents, Azmy and Zarah, for their love as well as moral support. I feel truly blessed by

their faith in me to study abroad to enhance my professional career.

www.manaraa.com

x

ABSTRACT

Approximate computing has emerged as one of the areas studied over the past few

years to improve the performance and energy consumption computers. Approximate

computing tolerates imprecision during computation, and it produces data values that are

close to the actual outputs obtained from exact computation. From software to circuit

level, approximate computing techniques have been applied across all computing

domains. This study was carried out on microarchitectural level, where dependencies

between two instructions are relaxed in the scheduling unit. This research proposed a

technique that allows dependent instructions to execute without waiting for values

produced by their producer instructions. This process enabled schedulers to skip certain

pipeline processes such operand rename lookup, and instruction wake-up in the

instruction scheduler queue to provide additional energy savings. The results of this work

revealed an average performance acceleration of 1.25x. In addition, the total of energy

savings was achieved at 4.6% for approximation cases that produced tolerable error at the

output.

www.manaraa.com

1

CHAPTER1. INTRODUCTION

The introduction of solid-state devices in the past has enabled computing technology

to evolve significantly over time. With Dennard Scaling [1], the length of the transistors can

be further scaled down which enables the computing device to run at higher frequencies at

the same power densities. Together with Moore’s Law [2], the number of transistors per unit

area doubled every two years. More recently, the introduction of multi-core processors has

led to a dramatic performance increase in computing.

Multiple techniques were proposed and developed in parallel to further increase the

performance of computers. These techniques were centered on a concept known as

Instruction Level Parallelism (ILP), where some computer instructions are executed

simultaneously as opposed to implementing it in sequential order. The Out-of-Order (OoO)

core [3] execution was developed to take advantage of free resources in the CPU pipeline,

where independent instructions can be scheduled and executed in parallel, and the

instructions are able to retire in in-order manner through the Reorder Buffer (ROB).

Another significant technique for increasing the ILP is through Branch Prediction

scheme [4]. For branch and jump instructions, it typically takes multiple clock cycles to

compute the branch target address. This could result in pipeline stall, where the subsequent

dependent instruction needs to wait for current branch computation to be completed. Branch

prediction forecasts the branch direction at the early stage of the pipeline. As more branch

instructions are correctly predicted, the number of overall cycles per instruction (CPI) of the

program will decrease significantly.

As computers have become mobile, much of the current focus has been directed

towards reducing energy and power consumption, since high performance computers draw a

www.manaraa.com

2

lot of energy in battery-operated devices. Among other techniques used, approximate

computing is one of the approaches implemented to reduce energy consumption by making

some of the computing data values as approximated instead of precise. The total high energy

consumption in computing is accumulated from all over the microarchitectural pipeline

stages in the superscalar processor. Data processing operations in pipeline stages that

contribute to huge energy consumptions are considered as good candidates for

approximation. From a hardware perspective, pipeline units that undergo approximation will

offer lower energy consumption. This research approximated the data value of instructions

with dependencies. By relaxing instruction dependencies, the user skipped the operand

rename lookup process in renaming stage and also ignored the instruction wake-up process in

the scheduling unit. Energy savings were obtained from these processes as well as the need to

use a smaller number of functional units.

The remainder of this thesis is organized as follows. Chapter 2 discusses approximate

computing in detail as well as value approximation. OoO core pipeline is also explained

since it was used as the foundation for this research. Chapter 3 discusses related works

pertaining to approximate computing, especially research that was closely related to the

current study. Chapter 4 discusses the selection of instruction for approximation as well as

approximation of dependency-based instruction, which was further narrowed to the

possibility of omitting the register operand renaming and instruction wake-up processes.

Chapter 5 describes the design implementation through the modification of the pre-existing

open source CPU system simulator program. Chapter 6 describes methodology and 7

discusses the evaluation and result. Finally, Chapter 8 provides the conclusion and provides

recommendations for future study.

www.manaraa.com

3

CHAPTER 2. BACKGROUND

This chapter discusses an overview of approximate computing, as well as the area in

computing system that can be exploited for approximation. Then, data value prediction and

approximation are reviewed; value approximation serves as the basis of this research. Finally,

the OoO pipeline is illustrated so that the possible approximation in the hardware can be

examined.

2.1 Approximate Computing

Approximate Computing has emerged as one of the areas that is explored over the

past few years. The failure of Dennard Scaling, where the transistor operating voltage could

not be further scaled down proportionally to the transistor size, has caused the power

densities of microprocessor to escalate. This has led to what is called as Dark Silicon

problem, where all transistors could not be fully utilized to prevent the chip from exceeding

the thermal limit [5, 6]. Due to this constrain, approximate computing has been proposed as a

technique to improve the energy efficiency of a computer [7]. The term approximate

computing can be thought as a method that does not produce an exact result, but rather

produces an imprecise value that is closed to the actual output value. This method can save a

lot of resources utilization as well as computing time, which implies gain in performance and

energy, but as a tradeoff, user would expect to see loss of quality at the output [8, 9, 10, 11].

Approximate computing can be applied in areas that can tolerate a percentage of loss and

errors, and an example of this would be in Digital Signal Processing (DSP) domain. A lot of

DSP application such as image and video processing, speech recognition, scientific data

computing, etc., require lots of computation and resources because huge amount of data is

consumed as inputs.

www.manaraa.com

4

In approximate computing, instead of producing an exact output, the method would

undergo couple of approximating processes such as, but not limited to, voltage over-scaling

[12], reducing the bit width precision for floating point data (which would save the functional

units in hardware) [13], and reusing the previous computed result [14]. The loss in quality

would be anticipated but as long as the result is tolerable within human perception, then the

output is good enough. Figure 2.1 shows an example of comparison of image quality between

precise (left) and approximate image (right). The approximate image still can easily be

identified, although the quality degrades.

Figure 2.1 The image quality between precise and approximate image (adapted from [11])

2.1.1 Region of Approximate Computing

There are various of approximate computing techniques that were introduced, and

these are implemented across both software and hardware. According to [8, 15, 16], the

region of approximation in computing can be divided into three: software/algorithm,

www.manaraa.com

5

architecture, and circuit. Both architecture and circuit regions fall under hardware

approximation techniques.

 2.1.1.1 Approximation in Software

Approximation in software is a straight forward technique that require programmers

to modify the code or introduce a different algorithm that compute the data in approximate

manner. For example, one of approximation techniques in software is Loop Perforation [17]:

In this approach, some iteration in a loop is skipped, which results in performance

enhancement and energy savings.

2.1.1.2 Approximation in Architecture

Approximation in architecture varies from Instruction Set Architecture (ISA) level to

the microarchitecture level. For example, in ISA extension several instructions are identified

at compilation time that are resilient towards approximation. In [20], a region of code in a

program can be examined and annotated, and the corresponding instruction are tagged as

approximate. On the other hand, for every annotated instruction that is executed during the

run time, such as load instruction, the microarchitecture can adapt several approximation

techniques and execute them in approximate manner [19].

Data that reside in memory storage can also be tolerated to errors. As indicated in

[21], the refresh rate of DRAM is made low to save energy. At the same time, it introduces

soft error in the memory cell which leads to alteration of the data value.

2.1.1.3 Approximation in Circuit

For approximation in the circuit level, some techniques include voltage over-scaling

in ALU as well as SRAM [12]. Lower voltage in SRAM causes the memory cell to fail and,

thus, introduces errors during accessing the data from caches [22], while voltage over-scaling

in logic cause timing violations which affect data precision [23]. Logic circuits such as the

www.manaraa.com

6

adder and multiplier can also be modified for approximation. For example, in a full adder

circuit the design of the adder is simplified at the circuit level which causes the adder to

perform an inaccurate addition function [11, 25].

2.1.2 Error Quality of Metrics

Since approximate computing improves performance and energy at the expense of

errors and loss of quality, several quality metrics are used to quantify the error that is

introduced. Different applications produce different outputs; therefore, specific quality

metrics are used for each application. For DSP application, Signal to Noise Ratio (SNR) of

the approximate output are compared with the exact output for evaluation [24, 25]. Root

Mean Square Error (RMSE) is another quality metric used in image processing application,

and average relative error is used for numerical output [26].

2.2 Value Speculation

Data value speculation is a technique that predicts the data used for computation

before the actual value is loaded to secure the computation cycle in the microarchitecture.

The current research predicted and approximated the output value of selected instruction to

exploit the microarchitecture for additional energy and power savings.

2.2.1 Value Prediction

Research in value prediction was carried out in the past to increase the performance

of a computer. The concept of Value Locality, where previously seen values are repeatedly

appeared in a program, enables the microarchitecture to predict the value of the data [27].

Similar to the branch prediction technique, where the speculation is made towards branch

previous history (taken or not taken) and is represented in a single bit, value prediction

extends the speculation to the entire data bits (32 or 64 bits).

www.manaraa.com

7

A typical approach to predict a value is through the incorporation of a value look-up

table or buffer in the microarchitecture [14, 33-35]. The computed data are stored in the table

and accessed later, when values of an instruction are being speculated. Due to the size of the

data, the table is typically large and is generally introduced as an overhead in the pipeline.

Similar to the branch prediction mechanism, in the event of misprediction of a value

for an instruction, the pipeline will be squashed and the process will restart by re-executing

the instruction precisely (normal execution).

2.2.2 Value Approximation

The concept of value approximation [19, 28] is similar to value prediction wherein

locality of the data permits the value to be speculated. However, in value approximation the

value does not need to be precise all the time. The exactness of a value can be relaxed and

imprecise data can be used to compute the output. Error is expected at the output; however,

as long as the effect is minimal and tolerable it should be adequate.

A distinct feature of value approximation is that the recovery step is eliminated

during misprediction. A gain in performance and energy can be achieved due to the saving of

the clock cycle and energy that are used during rollback/recovery steps.

2.3 Out-of-order Pipeline

An OoO superscalar pipeline core has become mainstream in the commercial CPU

due to the ability to dynamically execute instructions in parallel as opposed to single scalar

core. Figure 2.2 shows an example of an OoO pipeline that is modeled inside an McPAT tool

[29], a power modeling tool for CPU. This model is based on the architecture of Alpha 21264

processor [30] which is a physically-register based OoO core.

www.manaraa.com

8

Figure 2.2 Physical register based OoO pipeline (adapted from [29])

Due to limited number of architectural registers allocated during compiling time some

independent instructions are assigned with the same architectural register, which could lead

to false dependencies between those instructions. In the renaming stage, the architectural

register is renamed, or mapped into the microarchitecture’s physical register to take care of

the false dependencies issue. The Register Alias Table (RAT) contains a mapping of the

architectural register for the physical register. The Dependence Check Logic (DCL) circuit

checks true and false dependencies between instructions, and maps the appropriate physical

registers to the destination and source operands in the architectural register.

In the Issue and Schedule stages, the instruction will be dispatched into a buffer

known as Instruction Queue (IQ). The IQ holds instructions and schedules any instruction for

execution that is ready in an out-of-order manner. For an instruction to be ready its source

operands must also be available. Otherwise, for dependent instruction it must wait for

another instruction(s) (producer) to yield the result, which will then be written into the

register file and finally consumed by a dependent instruction (consumer). This process is

known as Instruction Wakeup/Select, where the producer wakes up the consumer instruction

once the result is ready.

www.manaraa.com

9

For instructions with Read-After-Write (RAW) dependency, this research proposed to

break this dependency by executing the consumer instruction without waiting for the

producer instruction. The result value of consumer instruction would be approximated and

the instruction, itself, would not have to be issued to the functional unit for execution.

In the rename stage, since the approximate instruction result (destination) is

speculated, there is no need to rename the source operand since it is not being used. In the

wakeup/select stage, since the consumer does not have to wait for the producer to generate

the result, the wakeup process is omitted. Both techniques could lead to additional energy

savings.

www.manaraa.com

10

CHAPTER 3. RELATED WORKS

3.1 Value Prediction Mechanism

Previous works in value prediction are centered on history-based approach. A result

value that is computed from an instruction is kept in a prediction table, and this value can be

reused constantly by the same instruction that follow in the next cycles. This technique is

known as last value prediction, as described by Lipasti et al. [14]. In a similar work, Sodani

and Sohi [31] presented an instruction reuse scheme, in which an instruction can reuse the

result produced by a previously-executed instruction based on the condition that both

instructions are consuming similar input values (i.e. instructions with different Program

Counter (PC) value). Azam et al. [32] implemented a buffer known as execution cache;

during execution of an instruction, in which registers find and grab the value from the cache

and computation in the functional unit is bypassed. The energy spent in cache is less that the

energy spent in the functional units which leads to energy savings.

Values stored in the table can also be updated regularly to improve the accuracy in

the predicted value. While last value prediction uses the same constant data repeatedly, a

certain predictor can also perform some computation to update its stored value. As shown in

[33-35], the authors used stride value to predict data based on the difference between two

previous values in the history. In two of the same studies [33, 34], a context-based predictor

was also used whereby data are updated according to a specific pattern generated from the

previous history of the data value.

3.2. Dependencies-based Instruction Speculation

True dependencies limit the ILP of a computer. Couple of works has focused on

improving the ILP through speculative dependencies instruction. Calder et al. [34] filtered

and selected a group of instructions for value predictions that provided a huge impact on

www.manaraa.com

11

performance, including instruction on the long dependency path. Instruction on a critical path

can be retired faster provided that the values consumed by those instructions are predicted

correctly.

Selecting instructions with a long latency for speculation has also proven to be

beneficial. As described by Alvarez et al. [24], selecting long latency instruction such as

floating-point multiplication and division for value approximation, provides a substantial

gain in performance and energy savings. In addition, several bits in the operands value are

truncated and used as tags in the table. Different instructions that have matching operand tags

can use these values; although the final quality of the output is degraded, the error is

tolerable. The authors also implemented this scheme for the in-order processor.

3.3 Eliminating Recover Mechanism

In a traditional value prediction scheme, in the event of value mispredictions all in-

flight instructions will be squashed, and the pipeline will restart from where the instruction is

mispredicted. Such a recovery is not needed in value approximation because an inexact value

can still be used for computation. San Miguel et. al [19] illustrated the concept of

approximating a value for load instruction. In the study, the authors approximated the value

when there is a missing cache; instead of spending additional cycles to obtain the value from

the main memory, the value was taken directly from the approximation table which might be

inaccurate. Approximating the value during cache misses delivers a significant performance

gain and reduces energy spent in fetching the value from the main memory. A similar scheme

was implemented in a Graphics Processing Unit (GPU) [28], where the main target was to

reduce the bottleneck of memory bandwidth. In the same study, Thwaites et al. used last-

value prediction for approximating floating-point data and stride for integers.

www.manaraa.com

12

CHAPTER 4. IDENTIFYING INSTRUCTION FOR APPROXIMATION

In order to execute certain instructions as approximate, the instruction must first be

identified and determined prior to running the program on the microarchitecture. It is most

important to select instructions for approximation that ensure the program behavior will not

be affected.

4.1 Instruction Selection

Previous research on approximate computing has made it possible to determine which

instruction is suitable for approximation. Through approximation language support

frameworks such as [18, 20, 36], programmers can identify the region of approximation in

the program and provide annotation to the data in the code which, in turn, is written in high-

level programming language. Data can be tagged as precise or approximate in which the

framework evaluates the safety of the approximation. To ensure the data are safe-to-

approximate, the data must not affect the control flow of a program or involve memory

operation, i.e. address of memory [19]. Typically, data that are suitable for approximation are

selected from a region that is time intensive as the process is executed multiple times, i.e.

expensive loops. [17, 19, 26].

In this study, selection was narrowed to arithmetic instruction, specifically addition,

multiplication and division, because the instructions require at least two operands. Similar to

previous studies, the purpose was to execute consumer instruction without waiting for its

producer to maximize performance gain.

An x86 ISA was utilized for this purpose and Sobel Operator sample code was

obtained from ACCEPT framework [18]. The code comes pre-annotated. This work was

leveraged to identify the instruction.

www.manaraa.com

13

4.2 True Dependencies

The foundation of this work was based on true dependencies of instructions, which

are also known as RAW dependencies. As discussed in Chapter 2, approximate data from the

program that have dependencies were used to speculate consumer instruction without waiting

for results from producer instruction(s). Figure 4.1 shows a portion of assembly instruction

with dependencies from Sobel operator code generated with objdump in Linux. Inst. 2 and

Inst. 3 (movsd) are producer instruction while Inst. 4 (divsd) is consumer instruction.

Figure 4.1 Example of x86 assembly instructions with dependencies

4.3 Benchmark Overview

4.3.1 Sobel Operator

Sobel operator [38] is an image processing filtering technique used for edge detection

of a greyscale image. Detection is based on the gradient measurement of an image through

derivative approximation function. The filter algorithm has two kernels, horizontal and

vertical kernels that are used for x-direction and y-direction edge detection, respectively. The

www.manaraa.com

14

image is convoluted with these two kernels and combined to produce the gradient magnitude

of the image. Equation 4.1 shows the horizontal and vertical kernel used in Sobel operator

algorithm.

Gx = [
+1 0 -1

+2 0 -2

+1 0 -1

] Gy = [
+1 +2 +1

 0 0 0

-1 -2 -1

] (4.1)

 Sobel application is suitable for approximation because the algorithm has loops that

keep iterating to compute the convolution, in which the number of iterations depends on the

size of the image. The input image is stored as a 2-dimensional array whereby each iteration

in the loop of the element of the array is incremented which corresponds to different pixels of

the image. The pixel value can be approximated; thus, instead of using an exact pixel, the

adjacent pixel can be reused.

 Not all instructions in Sobel code are safe for approximation; therefore, the source

code was modified in this study to include instructions that are insignificant and use

additional instructions to demonstrate the concept. In addition, based on the provided code,

filtering was done only for vertical direction; calculation for horizontal axis was not included.

www.manaraa.com

15

CHAPTER 5. DESIGN AND IMPLEMENTATION

5.1 Computer System Simulator

A Gem5 simulator [37] was used in this study. Gem5 is an open source simulator that

is widely used in computer architecture research. Gem5 is also a modular platform that

includes several microarchitectures such as an in-order and OoO processor, and can be

customized according to the user’s need. The OoO model in Gem5 was designed based on

Alpha 21264 [30] which implements physical-register based instruction window, known as

issue queue (IQ), in the issue stage. The IQ only holds instruction and physical register

operand tags and, during the wakeup process, the data value will be accessed from the

physical register file and issued to the functional unit for execution. In addition to running the

simulator in system-call emulation mode, Gem5 is also capable of running the simulation in

full system mode. The Gem5 was configured in this study to run in system-call emulation

mode to modify the microarchitecture. Gem5 also supports multiple ISA such as x86, ARM,

Alpha, RISC-V, etc.

5.2 Dependent Instructions Grouping

In this research it was assumed that some compilers could generate additional tags

and information for approximate instruction. Additional bits are used to tell if an instruction

is approximate or precise, as well as a producer and consumer type. It was also assumed that,

for related consumer instructions, a compiler can assign a group tag to each instruction that is

used for an approximation counter. The bit width of a group tag varies with the number of

instruction pairs to be approximated. For example, 3 bits of group tag would enable a total

number of 8 approximated instructions or fewer. Table 5.1 shows the additional tags of an

instruction. For Apx bit, bit 0 is assigned to exact instruction and 1 is for approximate

www.manaraa.com

16

Table 5.1 List of instructions, addresses and tags.

Instruction PC
Apx

bit

Inst. Type

bit

N-bits

Group

0x401244 1 0 1 (01)

0x401248 1 1 1 (01)

0x40124c 0 - -

. . . .

. . . .

0x40125d 1 0 2 (10)

0x401253 1 1 2 (10)

0x401257 0 - -

instruction. For Inst. Type, 0 is assigned to producer and 1 is assigned to consumer

instruction. Group bit is a unique identifier for each approximate instruction pair.

5.3 Execution of Approximate Instruction

The execution of an approximated consumer instruction takes place in the execute

stage. In a normal operation, once the value of source operands of an instruction is ready, the

instruction is set to be ready for execution where it will be issued into the functional unit. For

approximated instruction, this process is somehow bypassed; instead of issuing the

instruction to functional unit, the destination register value will grab its data from an

approximation table. This instruction does not have to wait for its producer and can proceed

directly for approximation. The value that is grabbed from the table will also be forwarded to

the register file. Figure 5.1 shows an overview of the block diagram, slightly modified from

[29], with the addition of the approximation table in the pipeline.

5.4 Approximation Table

Similar to previous research on value approximation, a lookup table was developed to

store the value used for approximation. To maintain a low overhead, last value

approximation was used, whereby the previously seen value in history was re-used. Only the

www.manaraa.com

17

Figure 5.1 Overview of execution process in the modified pipeline

destination register value on a consumer instruction is stored in this table, and the

instruction’s PC/group number can be used as tags, or keys for associative-searching

purposes. In addition, there is also a counter field that is allocated for each approximate

instruction entry. The counter maximum value indicates degree of approximation, which is

the number of times the value in table is used before it is being replaced and updated to a

new value. Users set this counter maximum value in advance. For example, if the counter

value is set to three, it means the instruction will be approximated for three consecutive

times. Once the counter reaches its maximum value, it will be reset to 0. Zero value

represents precise execution, and the value computed from precise execution will replace the

old value in the table entry. This pattern is fixed until the running program finishes. Figure

5.2 shows the execution flow of executing approximate instructions.

www.manaraa.com

18

Figure 5.2 Flow chart of how approximate instruction is executed

5.5 Source Operand Lookup in Renaming Unit

The source operand lookup process can be skipped for all consumer instructions that

are executed approximately. Typically, in a regular lookup process the DCL will perform a

check on the RAT and look for the entry that maps the operand architectural register to the

www.manaraa.com

19

physical register. The source operand will be renamed to the physical register index

according to that mapping.

Since approximate execution only updates the value of destination register, the value

of source operand(s) is not needed to compute an output. In this situation, instead of waiting

for the producer to feed the value, any approximate instruction can be set as ready to issue in

the pipeline since it has inactive and unnamed source operands.

The renaming unit also needs to check the counter in the approximation table before

the operand lookup process can be bypassed. This procedure is needed to keep the renaming

process in sync with the execution process. In other words, the lookup process can only be

skipped if and only if the instruction is set to be executed in approximate manner.

www.manaraa.com

20

CHAPTER 6. METHODOLOGY

MATLAB was used to compute and compare the Root-Mean-Square error between

the exact and approximate image to evaluate the error from the approximate output. McPAT

[29], an open source modeling framework tool that calculates and reports the power and area

based on modern processor, was used for energy consumption. McPAT takes its input from

Gem5’s statistics and configuration reports. These reports contain details about OoO core

processor parameters, as well as number of statistics for every important operation that takes

place in the pipeline. Some examples of these statistics include total number of cycles, total

number of committed instructions, number of branch mispredictions, etc. The number of

rename lookups were accessed from the statistics which correspond to the number register

operand lookup made in simulation. Performance measurement was accessed by using the

CPI value from the statistics. Simulations were run on Gem5’s system-call emulation mode,

and the settings were configured according to the specifications listed on Table 6.1. Other

parameters that are not listed in Table 6.1 were set to a default value provided in Gem5.

Table 6.1 Simulator Configuration.

Component Type/Size

Processor
DerivO3CPU (Out-of-Order), 2

GHz, 4-wide issue

Target ISA x86

Main Memory 4096 MB

L1 Data Cache 32 KB (2-way set associativity)

L1 Instruction Cache 32 KB (2-way set associativity)

Cache Line Size 64 B

www.manaraa.com

21

The experiment was divided into three groups which corresponded to the number of

instructions that were approximated, i.e. approximate one, two, and three instructions in total.

Multiplication was selected for one instruction approximation group. Multiplication and

division were selected for the two instructions group, whereas the three instructions group

included adding instructions together with multiplication and division.

An approximation pattern was selected for each group, known as degree of

approximation. For Approx-1, an instruction undergoes approximation with every other

precise execution. Thus, the data value in the approximation table is used once before it is

updated again through the next precise execution. The process is similar with Approx-2 and

Approx-3, whereby the value that belongs to a particular instruction in the table is used twice

and three times, respectively, before being updated with new data value. This degree of

approximation is set through the counter value in approximation table.

These instructions are not directly dependent on each other; load and store

instructions are located between the instructions. The add instruction is integer type, while

multiplication and division instruction are floating-point type.

www.manaraa.com

22

CHAPTER 7. RESULTS AND EVALUATION

7.1. Performance Analysis

The performance of every approximation case was compared to the original

simulation. The speedup for every case is shown in Figure 7.1. Group 1 (blue) approximates

only one instruction (mult); group 2 (orange) approximates 2 instructions (mult and div); and

group 3 (green) approximates 3 instructions (mult, div, and add) as group 3. This group

designation is used for reporting the results.

Figure 7.1 Speedup of each group with different degrees of approximation

Speedup increases with more number of approximated instructions. In addition,

increasing the degree of approximation in the same group slightly improves the performance,

although this is not seen in approx-2 case for group 1. In this experiment, the latency of

multiplication instruction was set to 4 cycles and the latency of division operation to 20

cycles (non-pipelined). Skipping the computation that takes numerous cycles in the

www.manaraa.com

23

functional unit contributes to the increase of the performance. In the case of group 3, having

an additional add instruction does not give any significant boost to the performance. Add

instruction typically takes one cycle to compute, and this is equal to the number of cycles that

is set when performing an approximation.

7.2 Error Analysis

The Root Mean Square Error (RMSE) metric was used to evaluate the quality of the

output image. RMSE evaluates how close a pixel value of an approximate image is to the

original image’s pixel value, by measuring the difference in the value of pixels between two

images. Figure 7.2 shows RMSE of all cases. A lower number indicates better quality.

The output image from original simulation as well as image obtained from select

cases are illustrated in Figure 7.3, together with their respective RMSE value. For group 2

Figure 7.2 RMSE of each of the approximate images with respect to the original image

www.manaraa.com

24

Figure 7.3 Image output for select cases (parentheses denotes degree of approximation)

www.manaraa.com

25

with approximation degree of 2, there is a slight distortion in the image (Figure 7.2d), even

though the RMSE is lower than output from the same group with approximation degree of 1.

The results imply that quality of image is not proportional to the degree of

approximation. However, increasing the number of approximated instructions degrades the

output quality. For this Sobel application, it was revealed that an approximated output image

still looks acceptable with RMSE value of ~3.5, subject to distortion.

7.3. Energy Analysis

The energy consumption was computed based on the static and dynamic power

reports generated from McPAT tool. The power measurement is derived based on 90 nm

technology node that was set up in McPAT. The energy is obtained by multiplying power

with the execution time. In addition to measuring the energy in the whole microarchitecture

core, the energy consumption was also examined for certain individual units of interest in the

pipeline. The analysis was begun by observing the overall energy consumption in the

microarchitecture for all cases of approximation. Based on this approximation technique,

energy savings was obtained in most of the cases. Figure 7.4 shows the percentage of energy

savings in every case in this experiment.

Due to skipping and omitting some microarchitectural event in the pipeline, the

reported number of related events was slightly less. Next, the dynamic power consumption

was examined to determine how this method contributes to the energy savings. The readings

from the statistics are related to the switching activities in the circuit that occur during the run

time. Dynamic power consumption corresponds to activity factors, which is one of the

parameters used in dynamic power calculation.

www.manaraa.com

26

Figure 7.4 Overall energy savings for all cases

Several relevant pipeline processes taken from gem5 statistics are presented based on

the main purpose of the study to look for energy savings in rename, scheduling, and

execution stage. Therefore, the event count is reported for some processes in these stages.

The evaluation compares only findings from the original with findings obtained from group

2, approx-2 case (see Table 7.1). The dynamic energy consumption of each unit of interest in

comparison is shown in Table 7.2.

Table 7.1 Energy Relevant Microarchitectural Event Counts.

Process Original Mult-Add (approx-2)

FP Rename Lookup 73396095 67941158

FP Instruction Wakeup 55672934 50654257

FP ALU Access 55675056 52550295

Approx. Table Read Count - 3380181

Approx. Table Write Count - 1301901

www.manaraa.com

27

Table 7.2 Dynamic Energy Consumption.

Unit
Dynamic Energy (mJ)

Original Mult-Add (approx-2)

Rename 91.620 91.27

Execution 407.95 393.03

Scheduling 118.65 116.17

Approximation Table - 12.74

Processor 843.86 831.51

7.3.1 Energy in Renaming Unit

Figure 7.5 shows the total energy savings in the renaming unit for all cases. As

predicted, energy savings is higher in group 2 and group 3. Next, an examination of how

skipping the operand lookup for approximate instructions affect the energy consumption was

made based on the findings in Table 7.2. The savings gained from skipping the operand

lookup process for group 2, approx-2 case was only 0.38%.

Figure 7.5 Total energy savings in renaming unit

www.manaraa.com

28

7.3.2. Energy in Scheduling Unit

Figure 7.6 illustrates the total energy saving in scheduling unit for all cases. As

indicated, the average energy savings in scheduling unit for group 2, approx-2 case is 2.06%.

The plot in the figure represents the sum of energy that is obtained from static and dynamic

power consumption.

The instruction wakeup process occurs inside the IQ, which is part of scheduling unit

in the pipeline. Therefore, the dynamic energy consumption for this unit was examined.

Based on data in both Table 7.1 and Table 7.2, a smaller number of FP Instruction Wakeup

process has contributed to a dynamic energy savings of 2%, for group 2, approx.-2 case.

7.3.3 Energy in Execution Unit

Figure 7.7 shows the energy savings in execution unit for all cases and based on the

percentage, most of the energy savings came from this stage. Approximate instructions were

not issued to the functional unit, which result in less number of functional unit used during

Figure 7.6 Total energy savings in scheduling unit

www.manaraa.com

29

Figure 7.7 Total energy savings in execution unit

runtime. The total energy saving from execution unit is around 5.9%, for group 2, approx.-2

case.

7.3.4 Approximation Table Overhead

As described in Section 5.4, a simple approximation table was developed with a goal

of not introducing too much overhead to the pipeline. In this experiment, only up to three

instructions were selected in total for approximation. Therefore, there was no need for a table

with large entries. Thus, there was not a need to use the entire PC bits for tags; group bits are

enough for this purpose (see Section 5.2). As shown in Table 7.2, the energy used in the

approximation table was low if compared to the amount of energy used in other units. It was

also revealed that, for all cases, the energy used (static + dynamic) in the approximation table

was in the range of 13.5 – 13.7 mJ. Therefore, the introduction of the approximate table does

www.manaraa.com

30

not contribute to more energy usage, except for the case of group-1, approx.-1, where the

total energy spent is slightly higher than the original simulation.

7.4 Discussion

A gain in performance is straight forward; skipping the long latency computation

saves lots of cycles. Nevertheless, in this case, because the outcome focused on energy

consumption, relaxing the dependency between two dependent instructions enabled tweaking

a couple of pipeline processes that could intuitively reduce the energy spent in the whole run.

This research was specifically focused on skipping the operand lookup in the rename

stage and omitting the instruction wake up in the scheduler to determine if it would

contribute to energy savings. The results revealed that not much energy can be saved from

these two methods dynamically. This is because the number of reductions in these two

processes is small. The reduction needs be much larger to determine if more savings can be

derived from these methods. To achieve this purpose, one would need to include and add

more instructions for approximation. Approximating more instructions saves energy;

nevertheless, the main argument of approximate computing is: How safe it is to approximate

those instructions; and, if they are safe, how many errors will be introduced at the output?

Like other approximate computing research, this trade-off analysis needs to be addressed

first, as well as how the outcome varies between applications.

For this application, one could determine the instruction group and approximation

degree that will provide good resulting values in all aspects. From the error vs. energy plot

shown in Figure 7.8, approximating multiplication and division instructions with

approximation degree of 1 and 2, can yield a good tradeoff between energy and error.

www.manaraa.com

31

Figure 7.8 Error vs. energy plot for all cases

www.manaraa.com

32

CHAPTER 8. CONCLUSION AND FUTURE WORK

Approximate computing is a widespread technique used to increase the performance

of computer system and reduce the energy spent in the pipeline. The technique utilizes less

resources as well as less computation time; however, as a tradeoff the user would expect to

see a loss of quality in the output. Approximate computing can be applied in areas that can

tolerate a percentage of loss and errors. An example of this can be found in the DSP domain.

Much application under DSP, such as image and video processing, speech recognition,

scientific data computing, etc., require a great deal of computation and resources due to the

need for a huge amount of computer data as inputs.

This thesis research introduced another microarchitectural approach in approximate

computing. This work demonstrated the effect of these approaches on the performance and

energy consumption of a computer. A value approximation technique was implemented by

scheduling dependent instructions without waiting for their operand values computed from

their producers. In this work, the best result was obtained at 1.25x speedup and total energy

savings of 4.6%, with an acceptable error at the final output.

Apart from energy savings that resulted from less usage of functional units, additional

energy savings techniques were applied in the pipeline. During approximation of an

instruction, the operand renaming lookup process was skipped during register renaming, as

well as disabling instruction wake up process in the IQ. An approximation with acceptable

image output revealed a minimal dynamic energy saving of approximately 0.4% for operand

lookup, and approximately 2% for the instruction wakeup process. The low energy saving is

expected because only a very small number of instructions was approximated, which led to

www.manaraa.com

33

very small reduction in related microarchitectural events. Since this study was still in

rudimentary stage, future work should include the following considerations:

• An approximation with more numbers of instructions. The number of operand

renaming lookup and instruction wakeup processes can be reduced proportionally

with higher number of instructions for approximations.

• Experimenting with different benchmarks. One might want to determine if these

techniques work across application from different domain. Applying these techniques

to different application might also provide more meaningful finding s and results.

• Selecting multiple instructions with longer dependency chain. As described in Section

3.2, speculation of instructions in long data path would enable instructions to commit

faster. If possible, the instruction at the beginning of the dependency chain until the

one before final consumer can be totally approximated or omitted from execution.

This could become another potential research area in the future.

www.manaraa.com

34

REFERENCES

[1] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous and A. R. LeBlanc,

“Design of ion-implanted MOSFET's with very small physical dimensions,” IEEE

Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256-268, Oct. 1974.

[2] G. E. Moore, “Cramming more components onto integrated circuits, Reprinted from

Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.,” IEEE Solid-State

Circuits Society Newsletter, vol. 11, no. 3, pp. 33-35, Sept. 2006.

[3] R. M. Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic Units,”

IBM Journal of Research and Development, vol. 11, no. 1, pp. 25-33, Jan. 1967.

[4] J. E. Smith, “A study of branch prediction strategies,” ISCA, 1981, pp. 135–148.

[5] M. B. Taylor, “Is dark silicon useful? Harnessing the four horsemen of the coming

dark silicon apocalypse,” DAC Design Automation Conference 2012, San Francisco,

CA, 2012, pp. 1131-1136.

[6] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam and D. Burger, “Dark

silicon and the end of multicore scaling,” 2011 38th Annual International Symposium

on Computer Architecture (ISCA), San Jose, CA, 2011, pp. 365-376.

[7] H. Esmaeilzadeh, A. Sampson, M. Ringenburg, L. Ceze, D. Grossman, and D.

Burger, “Addressing dark silicon challenges with disciplined approximate

computing,” Dark Silicon Workshop (DaSi), 2012.

[8] Q. Xu, T. Mytkowicz and N. S. Kim, “Approximate Computing: A Survey,” IEEE

Design & Test, vol. 33, no. 1, pp. 8-22, Feb. 2016.

[9] S. Mittal, “A survey of techniques for approximate computing,” ACM Computing

Survey., vol. 48, no. 4, p. 62, 2016.

[10] T. Moreau et al., “A Taxonomy of General Purpose Approximate Computing

Techniques,” IEEE Embedded Systems Letters, vol. 10, no. 1, pp. 2-5, March 2018.

[11] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for

energy-efficient design,” 2013 18th IEEE European Test Symposium (ETS), Avignon,

2013, pp. 1-6.

[12] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture support for

disciplined approximate programming,” ASPLOS, 2012.

[13] J. Y. F. Tong, D. Nagle and R. A. Rutenbar, “Reducing power by optimizing the

necessary precision/range of floating-point arithmetic,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 8, no. 3, pp. 273-286, June 2000.

www.manaraa.com

35

[14] M. H. Lipasti, and J. P. Shen, “Exceeding the dataflow limit via value

prediction,” Proceedings of the 29th Annual IEEE/ACM International Symposium on

Microarchitecture. MICRO 29, Paris, France, 1996, pp. 226-237.

[15] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, and J. Henkel, “Invited: Cross-

layer approximate computing: From logic to architectures,” 2016 53nd

ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, 2016, pp. 1-6.

[16] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Computing

approximately, and efficiently,” 2015 Design, Automation & Test in Europe

Conference & Exhibition, Grenoble, 2015, pp. 748-751.

[17] S. Sidiroglou, S. Misailovic, H. Hoffmann, and M. Rinard, “Managing performance

vs. accuracy trade-offs with loop perforation,” ESEC/FSE, 2011.

[18] A. Sampson, A. Baixo, B., Ransford, T. Moreau, J. Yip, L. Ceze, and M. Oskin,

“ACCEPT: A programmer-guided compiler framework for practical approximate

computing,” U. Washington, Tech. Rep. UW-CSE-15-01-01, 2015.

[19] J. San Miguel, M. Badr, and N. Enright Jerger, “Load value approximation,” MICRO,

2014.

[20] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman,

“EnerJ: Approximate data types for safe and general low-power computation,” Peoc.

PLDI, 2011, pp. 164-174.

[21] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Saving refresh-

power in mobile devices through critical data partitioning,” ASPLOS, 2011.

[22] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy caches:

simple techniques for reducing leakage power,” in ISCA, 2002.

[23] V. K. Chippa, S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan,

“Approximate computing: An integrated hardware approach,” 2013 Asilomar

Conference on Signals, Systems and Computers, Pacific Grove, CA, 2013, pp. 111-

117.

[24] C. Alvarez, J. Corbal, and M. Valero, “Fuzzy memoization for floating-point

multimedia applications,” IEEE Transactions on Computers, vol. 54, no. 7, pp. 922-

927, July 2005.

[25] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-Power Digital Signal

Processing Using Approximate Adders,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 32, no. 1, pp. 124-137, Jan. 2013.

[26] A. Yazdanbakhsh, D. Mahajan, P. Lotfi-Kamran, and H. Esmaeilzadeh, “AXBENCH:

A Multi-Platform Benchmark Suite for Approximate Computing,” IEEE Design and

Test, special issue on Computing in the Dark Silicon Era 2016.

www.manaraa.com

36

[27] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value locality and loadvalue

prediction,” 17th International Conference on Architectural Support for

Programming Language and operating Systems, pp. 138-147, October 1996.

[28] B. Thwaites et al., “Rollback-free value prediction with approximate loads,” 2014

23rd International Conference on Parallel Architecture and Compilation Techniques

(PACT), Edmonton, AB, 2014, pp. 493-494.

[29] S. Li, J. Ahn, J. B. Brockman, and N. P. Jouppi, “McPAT 1.0: An Integrated Power,

Area, and Timing Modeling Framework for Multicore Architecture,” HP Labs, Tech.

Rep. HPL-2009-206.

[30] R. E. Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, vol. 19, no. 2, 1999.

[31] A. Sodani and G. S. Sohi, “Dynamic instruction reuse,” Proceedings of the 24th

International Symposium on Computer Architecture, pp.194-205, June 1997.

[32] M. Azam, P. Franzon and W. Liu, “Low power data processing by elimination of

redundant computations,” Proceedings of 1997 International Symposium on Low

Power Electronics and Design, Monterey, CA, USA, 1997, pp. 259-264.

[33] Y. Sazeides and J. E. Smith, “The predictability of data values,” Proceedings of 30th

Annual International Symposium on Microarchitecture, Research Triangle Park, NC,

USA, 1997, pp. 248-258.

[34] B. Calder, G. Reinman, and D. M. Tullsen, “Selective value prediction,” Proceedings

of the 26th International Symposium on Computer Architecture (Cat.

No.99CB36367), Atlanta, GA, USA, 1999, pp. 64-74.

[35] F. Gabbay, and A. Mendelson, “Speculative execution based on value prediction,”

Technical Report 1080, Technion-Israel Institute of Technology, EE Dept., Nov

1996.

[36] J. Park, H. Esmaeilzadeh, X. Zhang, M. Naik, and W. Harris, “Flexjava: Language

support for safe and modular approximate programming,” Proc. 23rd Symp. Found.

Softw. Eng., 2015, pp. 745–757.

[37] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,

D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.

Hill, and D. A. Wood, “The GEM5 Simulator,” SIGARCH Computer Architecture

News, vol. 39, no. 2, May 2011.

[38] S. Gupta, and S. G. Mazumdar, “Sobel Edge Detection Algorithm,” International

Journal of Computer Science and Management Research, vol. 2, no. 2, Feb. 2013.

	2018
	Energy savings techniques in out-of-order pipeline through value approximation of instructions with data dependencies
	Mohd Tariq Azmy
	Recommended Citation

	tmp.1552402086.pdf.LF9vw

